Ethanol

References

Equation of State

J. A. Schroeder, S. G. Penoncello, and J. S. Schroeder. A Fundamental Equation of State for Ethanol. J. Phys. Chem. Ref. Data, 43(4):043102, 2014. doi:10.1063/1.4895394.

Thermal Conductivity

M. J. Assael, E. A. Sykioti, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42(2):023102–1:10, 2013. doi:10.1063/1.4797368.

Viscosity

S. B. Kiselev, J. F. Ely, I. M. Abdulagatov, and M. L. Huber. Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n-Alkanols. Ind. Eng. Chem. Res., 44:6916–6927, 2005. doi:10.1021/ie050010e.

Melting Line

T. F. Sun, J. A. Schouten, N. J. Trappeniers, and S. N. Biswas. Accurate Measurement of the Melting Line of Methanol and Ethanol at Pressures up to 270 MPa. Ber. Bunsenges. Phys. Chem., 92:652–655, 1988. doi:10.1002/bbpc.198800153.

Surface Tension

A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.

Aliases

C2H6O, ethanol, ETHANOL

Fluid Information

Parameter, Value

General

Molar mass [kg/mol]

0.04606844

CAS number

64-17-5

ASHRAE class

UNKNOWN

Formula

\(C_{2}H_{6}O\)

Acentric factor

0.644

InChI

InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3

InChIKey

LFQSCWFLJHTTHZ-UHFFFAOYSA-N

SMILES

CCO

ChemSpider ID

682

2D image

http://www.chemspider.com/ImagesHandler.ashx?id=682

Limits

Maximum temperature [K]

650.0

Maximum pressure [Pa]

280000000.0

Triple point

Triple point temperature [K]

159.10000000000002

Triple point pressure [Pa]

0.0007353928225172699

Critical point

Critical point temperature [K]

514.71

Critical point density [kg/m3]

273.1858492

Critical point density [mol/m3]

5930.0

Critical point pressure [Pa]

6268000.0

REFPROP Validation Data

Note

This figure compares the results generated from CoolProp and those generated from REFPROP. They are all results obtained in the form \(Y(T,\rho)\), where \(Y\) is the parameter of interest and which for all EOS is a direct evaluation of the EOS

You can download the script that generated the following figure here: (link to script), right-click the link and then save as… or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/Ethanol.png

Consistency Plots

The following figure shows all the flash routines that are available for this fluid. A red + is a failure of the flash routine, a black dot is a success. Hopefully you will only see black dots. The red curve is the maximum temperature curve, and the blue curve is the melting line if one is available for the fluid.

In this figure, we start off with a state point given by T,P and then we calculate each of the other possible output pairs in turn, and then try to re-calculate T,P from the new input pair. If we don’t arrive back at the original T,P values, there is a problem in the flash routine in CoolProp. For more information on how these figures were generated, see CoolProp.Plots.ConsistencyPlots

Note

You can download the script that generated the following figure here: (link to script), right-click the link and then save as… or the equivalent in your browser. You can also download this figure as a PDF.

../../_images/Ethanol1.png