Bibliography

References

[1]

Eric W. Lemmon and E. Christian Ihmels. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilib., 228-229:173–187, 2005. doi:10.1016/j.fluid.2004.09.004.

[2]

A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.

[3]

E.W. Lemmon and R. Span. Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51:785–850, 2006. doi:10.1021/je050186n.

[4]

Eric W. Lemmon, Richard T. Jacobsen, Steven G. Penoncello, and Daniel G. Friend. Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data, 29(3):331–385, 2000. doi:10.1063/1.1285884.

[5]

E. W. Lemmon and R. T Jacobsen. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys., 25(1):21–69, 2004. doi:10.1023/B:IJOT.0000022327.04529.f3.

[6]

K. Gao, J. Wu, I. H. Bell, and E. W. Lemmon. Thermodynamic Properties of Ammonia for Temperatures from the Melting Line to 725 K and Pressures to 1000 MPa. J. Phys. Chem. Ref. Data, 2020.

[7]

R. Tufeu, D.Y. Ivanov, Y. Garrabos, and B. Le Neindre. Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Bereicht der Bunsengesellschaft Phys. Chem., 88:422–427, 1984. doi:10.1002/bbpc.19840880421.

[8]

A. Fenghour, W.A. Wakeham, V. Vesovic, J.T.R. Watson, J. Millat, and E. Vogel. The Viscosity of Ammonia. J. Phys. Chem. Ref. Data, 24:1649–1667, 1995. 5. doi:10.1063/1.555961.

[9]

Ch. Tegeler, R. Span, and W. Wagner. A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 28:779–850, 1999. doi:10.1063/1.556037.

[10]

M. Thol, E.W. Lemmon, and R. Span. Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa. High Temperatures-High Pressures, 41:81–97, 2012.

[11]

M.J. Assael, E. Mihailidou, M.L. Huber, and R.A. Perkins. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 41:043102–1:9, 2012. doi:10.1063/1.4755781.

[12]

S. Avgeri, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of Benzene from the Triple Point to 675 K and up to 300 MPa. J. Phys. Chem. Ref. Data, 43:033103, 2014. doi:10.1063/1.4892935.

[13]

R. Span and W. Wagner. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25:1509–1596, 1996. doi:10.1063/1.555991.

[14]

M. L. Huber, E. A. Sykioti, M. J. Assael, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa. Journal of Physical and Chemical Reference Data, 2016. doi:10.1063/1.4940892.

[15]

A. Laesecke and C. D. Muzny. Reference Correlation for the Viscosity of Carbon Dioxide. Journal of Physical and Chemical Reference Data, 2017. doi:10.1063/1.4977429.

[16]

Susane F. Barreiros, Jorge C. G. Calado, and Manuel Nunes da Ponte. The Melting Curves of Carbon Monoxide. J. Chem. Thermodyn., 14:1197–1198, 1982. doi:10.1016/0021-9614(82)90044-1.

[17]

Yong Zhou, Jun Liu, Steven G. Penoncello, and Eric W. Lemmon. An Equation of State for the Thermodynamic Properties of Cyclohexane. J. Phys. Chem. Ref. Data, 43:043105–1:12, 2014. doi:10.1063/1.4900538.

[18]

U. Tariq, A. R. B. Jusoh, N. Riesco, and V. Vesovic. Reference Correlation of the Viscosity of Cyclohexane from the Triple Point to 700 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 43(3):033101–1:18, 2014. doi:10.1063/1.4891103.

[19]

S. G. Penoncello, R. T Jacobsen, and A. R. H. Goodwin. A Thermodynamic Property Formulation for Cyclohexane. Int. J. Thermophys., 16(2):519–531, 1995. doi:10.1007/BF01441918.

[20]

Axel Polt, Bernhard Platzer, and Gerd Maurer. Parameter der thermischen Zustandsgleichung von Bender für 14 mehratomige reine Stoffe. Chem. Technik, 22:216–224, 1992.

[21]

A. Mulero and I. Cachadiña. Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP Program. J. Phys. Chem. Ref. Data, 43:023104–1:8, 2014. doi:10.1063/1.4878755.

[22]

Holger Gedanitz, María J. Dávila, and Eric W. Lemmon. Speed of sound measurements and a fundamental equation of state for cyclopentane. J. Chem. Eng. Data, 60(5):1331–1337, 2015. doi:10.1021/je5010164.

[23]

C-M Vassiliou, MJ Assael, ML Huber, and RA Perkins. Reference Correlations of the Thermal Conductivity of Cyclopentane, iso-Pentane, and n-Pentane. Journal of Physical and Chemical Reference Data, 44(3):033102, 2015.

[24]

Ting Horng Chung, Mohammad Ajlan, Lloyd L Lee, and Kenneth E Starling. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res., 27(4):671–679, 1988. doi:10.1021/ie00076a024.

[25]

Monika Thol. Empirical Multiparameter Equations of State Based on Molecular Simulation and Hybrid Data Sets. PhD thesis, Ruhr-Universität Bochum, 2015.

[26]

M. Thol, M.A. Javed, E. Baumhoegger, R. Span, and J. Vrabec. Thermodynamic Properties of Dodecamethylpentasiloxane, Tetradecamethylhexasiloxane, and Decamethylcyclopentasiloxane. Fluid Phase Equilib., 2019.

[27]

P. Colonna, N.R. Nannan, and A. Guardone. Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,...,3, and [O-Si-(CH3)2]6. Fluid Phase Equilib., 263:115–130, 2008. doi:10.1016/j.fluid.2007.10.001.

[28]

I.A. Richardson, J.W. Leachman, and E.W. Lemmon. Fundamental Equation of State for Deuterium. J. Phys. Chem. Ref. Data, 43:013103, 2014. doi:10.1063/1.4864752.

[29]

Monika Thol, Lorenzo Piazza, and Roland Span. A New Functional Form for Equations of State for Some Weakly Associating Fluids. Int. J. Thermophys., 35(5):783–811, 2014. URL: http://dx.doi.org/10.1007/s10765-014-1633-1, doi:10.1007/s10765-014-1633-1.

[30]

Yong Zhou, Jiangtao Wu, and Eric W. Lemmon. Thermodynamic Properties of Dimethyl Carbonate. J. Phys. Chem. Ref. Data, 40(4):043106–1:11, 2011. doi:10.1063/1.3664084.

[31]

Jiangtao Wu, Yong Zhou, and Eric W. Lemmon. An Equation of State for the Thermodynamic Properties of Dimethyl Ether. J. Phys. Chem. Ref. Data, 40(2):023104–1:16, 2011. doi:10.1063/1.3582533.

[32]

Xianyang Meng, Jianbo Zhang, Jiangtao Wu, and Zhigang Liu. Experimental Measurement and Modeling of the Viscosity of Dimethyl Ether. J. Chem. Eng. Data, 57:988–993, 2012. doi:10.1021/je201297j.

[33]

D. Buecker and W. Wagner. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data, 35(1):205–266, 2006. doi:10.1063/1.1859286.

[34]

Daniel G. Friend, Hepburn Ingham, and James F. Ely. Thermophysical Properties of Ethane. J. Phys. Chem. Ref. Data, 20(2):275–347, 1991. doi:10.1063/1.555881.

[35]

J. A. Schroeder, S. G. Penoncello, and J. S. Schroeder. A Fundamental Equation of State for Ethanol. J. Phys. Chem. Ref. Data, 43(4):043102, 2014. doi:10.1063/1.4895394.

[36]

M. J. Assael, E. A. Sykioti, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42(2):023102–1:10, 2013. doi:10.1063/1.4797368.

[37]

S. B. Kiselev, J. F. Ely, I. M. Abdulagatov, and M. L. Huber. Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n-Alkanols. Ind. Eng. Chem. Res., 44:6916–6927, 2005. doi:10.1021/ie050010e.

[38]

T. F. Sun, J. A. Schouten, N. J. Trappeniers, and S. N. Biswas. Accurate Measurement of the Melting Line of Methanol and Ethanol at Pressures up to 270 MPa. Ber. Bunsenges. Phys. Chem., 92:652–655, 1988. doi:10.1002/bbpc.198800153.

[39]

Yong Zhou, Jiangtao Wu, and Eric W. Lemmon. Thermodynamic Properties of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene. J. Phys. Chem. Ref. Data, 41(2):023103–1 – 023103–26, 2012. doi:10.1063/1.3703506.

[40]

S. K. Mylona, K. D. Antoniadis, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlations of the Thermal Conductivity of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene from the Triple Point to 700 K and Moderate Pressures. J. Phys. Chem. Ref. Data, 43:043104, 2014. doi:10.1063/1.4901166.

[41]

J. Smukala, R. Span, and W. Wagner. New Equation of State for Ethylene Covering the Fluid Region for Temperatures From the Melting Line to 450 K at Pressures up to 300 MPa. J. Phys. Chem. Ref. Data, 29(5):1053–1121, 2000. doi:10.1063/1.1329318.

[42]

Monika Thol, Gábor Rutkai, Andreas Köster, Mirco Kortmann, Roland Span, and Jadran Vrabec. Fundamental equation of state for ethylene oxide based on a hybrid dataset. Chem. Eng. Sci., 121:87–99, 2015. doi:10.1016/j.ces.2014.07.051.

[43]

Monika Thol, Gábor Rutkai, Andreas Köster, Mirco Kortmann, Roland Span, and Jadran Vrabec. Corrigendum to 'Fundamental equation of state for ethylene oxide based on a hybrid dataset'. Chem. Eng. Sci., 134:887–890, 2015. doi:10.1016/j.ces.2015.06.020.

[44]

K.M. de Reuck. Fluorine: International Thermodynamic Tables of the Fluid State - 11. Blackwell Scientific Publications, 1990.

[45]

Ryo Akasaka and Yohei Kayukawa. A fundamental equation of state for trifluoromethyl methyl ether (HFE-143m) and its application to refrigeration cycle analysis. Int. J. Refrig., 35:1003–1013, 2012. doi:10.1016/j.ijrefrig.2012.01.003.

[46]

S. Herrig, M. Thol, R. Span, A.H. Harvey, and E.W. Lemmon. A Reference Equation of State for Heavy Water. J. Phys. Chem. Ref. Data, 2019.

[47]

IAPWS. Revised release on viscosity and thermal conductivity of heavy water substance. 2007.

[48]

IAPWS. Iapws release on surface tension of heavy water substance. 1994.

[49]

D. O. Ortiz-Vega, K. R. Hall, J. C. Holste, V. D. Arp, A. H. Harvey, and E. W. Lemmon. Equation of state for Helium-4. Unpublished - coefficients from REPROP 10 with permission, 2019.

[50]

B.A. Hands and V.D. Arp. A Correlation of Thermal Conductivity Data for Helium. Cryogenics, 21(12):697–703, 1981. doi:10.1016/0011-2275(81)90211-3.

[51]

V.D. Arp, R.D. McCarty, and D.G Friend. Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa - NIST Technical Note 1334 (revised). Technical Report, NIST, 1998.

[52]

Frédéric Datchi, Paul Loubeyre, and René LeToullec. Extended and accurate determination of the melting curves of argon, helium, ice (H$_2$O) and hydrogen (H$_2$). Physical Review B, 61(10):6535–6546, 2000. doi:10.1103/PhysRevB.61.6535.

[53]

J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, and E.W. Lemmon. Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen. J. Phys. Chem. Ref. Data, 38(3):721–748, 2009. doi:10.1063/1.3160306.

[54]

M. J. Assael, J.-A. M. Assael, M. L. Huber, R. A. Perkins, and Y. Takata. Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa. J. Phys. Chem. Ref. Data, 40(3):033101–1:13, 2011. doi:10.1063/1.3606499.

[55]

Chris D. Muzny, Marcia L. Huber, and Andrei F. Kazakov. Correlation for the Viscosity of Normal Hydrogen Obtained from Symbolic Regression. J. Chem. Eng. Data, 2013. doi:10.1021/je301273j.

[56]

Monika Thol, Frithjof H. Dubberke, Elmar Baumhögger, Roland Span, and Jadran Vrabec. Speed of sound measurements and a fundamental equation of state for hydrogen chloride. J. Chem. Eng. Data, 63(7):2533–2547, 2018. doi:10.1021/acs.jced.7b01031.

[57]

Sergio E. Quiñones-Cisneros, Kurt A. G. Schmidt, Binod R. Giri, Pierre Blais, and Robert A. Marriott. Reference Correlation for the Viscosity Surface of Hydrogen Sulfide. J. Chem. Eng. Data, 57:3014–3018, 2012. doi:10.1021/je300601h.

[58]

D. Buecker and W. Wagner. Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data, 35(2):929–1019, 2006. doi:10.1063/1.1901687.

[59]

R.A. Perkins. Measurement and Correlation of the Thermal Conductivity of Isobutane from 114 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47(5):1272–1279, 2002. doi:10.1021/je010121u.

[60]

E. Vogel, C. Kuechenmeister, and E. Bich. Viscosity Correlation for Isobutane over Wide Ranges of the Fluid Region. Int. J. Thermophys, 21(2):343–356, 2000. doi:10.1023/A:1006623310780.

[61]

Larry E. Reeves, Gene J. Scott, and Stanley E. Babb Jr. Melting Curves of Pressure Transmitting Fluids. J. Chem. Phys., 40:3662–3666, 1964. doi:10.1063/1.1725068.

[62]

A. Michels and C. Prins. The Melting Lines of Argon, Krypton and Xenon up to 1500 atm; Representation of the Results by a Law of Corresponding States. Physica, 28:101–116, 1962. doi:10.1016/0031-8914(62)90096-4.

[63]

Monika Thol, Frithjof H. Dubberke, Elmar Baumhögger, Jadran Vrabec, and Roland Span. Speed of sound measurements and fundamental equations of state for octamethyltrisiloxane and decamethyltetrasiloxane. J. Chem. Eng. Data, 62(9):2633–2648, jul 2017. doi:10.1021/acs.jced.7b00092.

[64]

Monika Thol. Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. Fluid Phase Equilib., 2015. doi:10.1016/j.fluid.2015.09.047.

[65]

U. Setzmann and W. Wagner. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20(6):1061–1151, 1991. doi:10.1063/1.555898.

[66]

Daniel G. Friend, James F. Ely, and Hepburn Ingham. Thermophysical Properties of Methane. J. Phys. Chem. Ref. Data, 1989. doi:10.1063/1.555828.

[67]

Sergio E. Quiñones-Cisneros and Ulrich K. Deiters. Generalization of the Friction Theory for Viscosity Modeling. J. Phys. Chem. B, 110:12820–12834, 2006. doi:10.1021/jp0618577.

[68]

Evan H. Abramson. Melting curves of argon and methane. High Pressure Research, 31(4):549–554, 2011. doi:10.1080/08957959.2011.629617.

[69]

L. Piazza and R. Span. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilib., 349:12–24, 2013. doi:10.1016/j.fluid.2013.03.024.

[70]

E. A. Sykioti, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42:043101, 2013. doi:10.1063/1.4829449.

[71]

Hong Wei Xiang, Arno Laesecke, and Marcia L. Huber. A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data, 35(4):1597–1:24, 2006. doi:10.1063/1.2360605.

[72]

K.M. de Reuck and R.J.B. Craven. Methanol: International Thermodynamic Tables of the Fluid State - 12. Blackwell Scientific Publications, 1993.

[73]

Marcia L. Huber, Eric W. Lemmon, Andrei Kazakov, Lisa S. Ott, and Thomas J. Bruno. Model for the Thermodynamic Properties of a Biodiesel Fuel. Energy & Fuels, 23:3790–3797, 2009. doi:10.1021/ef900159g.

[74]

M. Thol, R. Beckmüller, R. Weiss, A.H. Harvey, E.W. Lemmon, R.T. Jacobsen, and R. Span. Thermodynamic Properties for Neon for Temperatures from the Triple Point to 700 K at Pressures to 700 MPa. J. Phys. Chem Ref. Data, 2019, Submitted.

[75]

David Santamaría-Pérez, Goutam Dev Mukherjee, Beate Schwager, and Reinhard Boehler. High-pressure melting curve of helium and neon: Deviations from corresponding states theory. Physical Review B, 81:214101:1–5, 2010. doi:10.1103/PhysRevB.81.214101.

[76]

Roland Span, Eric W. Lemmon, Richard T. Jacobsen, Wolfgang Wagner, and Akimichi Yokozeki. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data, 29:1361–1433, 2000. doi:10.1063/1.1349047.

[77]

Mark O. McLinden, Richard A. Perkins, Eric W. Lemmon, and Tara J. Fortin. Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State. J. Chem. Eng. Data, 60(12):3646–3659, 2015. doi:10.1021/acs.jced.5b00623.

[78]

R. Schmidt and W. Wagner. A New Form of the Equation of State for Pure Substances and its Application to Oxygen. Fluid Phase Equilib., 19(3):175–200, 1985. doi:10.1016/0378-3812(85)87016-3.

[79]

Richard B. Stewart, Richard T. Jacobsen, and W. Wagner. Thermodynamic Properties of Oxygen from the Triple Point to 300 K with Pressures to 80 MPa. J. Phys. Chem. Ref. Data, 20(5):917–1021, 1991. doi:10.1063/1.555897.

[80]

Ben A Younglove. Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. Technical Report, DTIC Document, 1982.

[81]

E.W. Lemmon, U. Overhoff, M.O. McLinden, and W. Wagner. Equation of state for propylene. Personal communication with Eric Lemmon, 2010.

[82]

Marcia L. Huber, Arno Laesecke, and Richard A. Perkins. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Ind. Eng. Chem. Res., 42:3163–3178, 2003. doi:10.1021/ie0300880.

[83]

R.T Jacobsen, S.G. Penoncello, and E.W. Lemmon. A Fundamental Equation for Trichlorofluoromethane (R-11). Fluid Phase Equilib., 80:45–56, 1992. doi:10.1016/0378-3812(92)87054-Q.

[84]

Mark O. McLinden, Sanford A. Klein, and Richard A. Perkins. An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrig., 23:43–63, 2000. doi:10.1016/S0140-7007(99)00024-9.

[85]

S.A. Klein, M.O. McLinden, and A. Laesecke. An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrig., 20:208–217, 1997. doi:10.1016/S0140-7007(96)00073-4.

[86]

Volker Marx, Andreas Pruss, and Wolfgang Wagner. Neue Zustandsgleichung für R 12, R 22, R 11 und R 113 - Beschreibung des therodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Druücken bis 200 MPa. Volume 19. VDI Verlag, 1992.

[87]

B. Platzer, A. Polt, and G. Maurer. Thermophysical Properties of Refrigerants. Springer-Verlag, 1990. doi:10.1007/978-3-662-02608-3.

[88]

Eric W. Lemmon and Roland Span. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R13I1. J. Chem. Eng. Data, 2016, submitted. doi:10.1021/acs.jced.5b00684.

[89]

Ben A. Younglove. An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2-Dichloro-1,1,1-Trifluoroethane). J. Phys. Chem. Ref. Data, 23(5):731–779, 1994. doi:10.1063/1.555950.

[90]

Arno Laesecke, Richard A. Perkins, and John B. Howley. An improved correlation for the thermal conductivity of HCFC123 (2,2-dichloro-1,1,1-trifluoroethane). Int. J. Refrig., 19(4):231–238, 1996. doi:10.1016/0140-7007(96)00019-9.

[91]

Y. Tanaka and T. Sotani. Thermal Conductivity and Viscosity of 2,2-Dichloro-1,1,1-Trifluoroethane (HCFC-123). Int. J. Thermophys., 17(2):293–328, 1996. doi:10.1007/BF01443394.

[92]

María E. Mondejár, Mark O. McLinden, and Eric W. Lemmon. Thermodynamic Properties of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)): Vapor Pressure, ($p$, ρ, $T$) Behavior, and Speed of Sound Measurements, and Equation of State. J. Chem. Eng. Data, 60:2477–2489, 2015. doi:10.1021/acs.jced.5b00348.

[93]

Ian H. Bell and Arno Laesecke. Viscosity of refrigerants and other working fluids from residual entropy scaling . In 16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016. 2016.

[94]

Chieko Kondou, Ryuichi Nagata, Noriko Nii, Shigeru Koyama, and Yukihiro Higashi. Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E). Int. J. Refrig., 53:80–89, 2015. doi:10.1016/j.ijrefrig.2015.01.005.

[95]

M. Richter, M. O. McLinden, and E. W. Lemmon. Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and $p−\rho −T$ Measurements and an Equation of State. J. Chem. Eng. Data, 56:3254–3264, 2011. doi:10.1021/je200369m.

[96]

Richard A. Perkins and Marcia L. Huber. Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). J. Chem. Eng. Data, 56:4868–4874, 2011. doi:10.1021/je200811n.

[97]

Monika Thol and Eric W. Lemmon. Equation of State for the Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R-1234ze(E)]. Int. J. Thermophys, 37(3):1–16, 2016. doi:10.1007/s10765-016-2040-6.

[98]

Ryo Akasaka and Eric Lemmon. New Fundamental Equations of State for cis-1,3,3,3-Tetrafluoropropene [R-1234ze(Z)] and 3,3,3-Trifluoropropene (R-1243zf). J. Chem. Eng. Data, 2019, submitted.

[99]

B. de Vries, R. Tillner-Roth, and H.D. Baehr. Thermodynamic Properties of HCFC 124. In 19th International Congress of Refrigeration, The Hague, The Netherlands, 582–589. 1995.

[100]

Eric W. Lemmon and Richard T Jacobsen. A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data, 34(1):69–108, 2005. doi:10.1063/1.1797813.

[101]

Richard A. Perkins and Marcia L. Huber. Measurement and Correlation of the Thermal Conductivity of Pentafluoroethane (R125) from 190 K to 512 K at Pressures to 70 MPa. J. Chem. Eng. Data, 51:898–904, 2006. doi:10.1021/je050372t.

[102]

Marcia L. Huber and Arno Laesecke. Correlation for the Viscosity of Pentafluoroethane (R125) from the Triple Point to 500 K at Pressures up to 60 MPa. Ind. Eng. Chem. Res., 45:4447–4453, 2006. doi:10.1021/ie051367l.

[103]

Ryo Akasaka, Marcia L. Huber, Luke Simoni, and Eric W. Lemmon. A Helmholtz Energy Equation of State for trans-1,1,1,4,4,4-Hexafluoro-2-butene [R-1336mzz(E)]. International Journal of Thermophysics, 44:1003–1013, 2023. doi:10.1007/s10765-022-03143-5.

[104]

Reiner Tillner-Roth and Hans Dieter Baehr. A International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. J. Phys. Chem. Ref. Data, 23:657–729, 1994. doi:10.1063/1.555958.

[105]

Eric W. Lemmon and Richard T. Jacobsen. An International Standard Formulation for the Thermodynamic Properties of 1,1,1-Trifluoroethane (HFC-143a) for Temperatures From 161 to 450 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data, 29(4):521–552, 2000. doi:10.1063/1.1318909.

[106]

Stephanie L. Outcalt and Mark O. McLinden. A Modified Benedict-Webb-Rubin Equation of State for the Thermodynamic Properties of R152a (1,1-difluoroethane). J. Phys. Chem. Ref. Data, 25(2):605–636, 1996. doi:10.1063/1.555979.

[107]

R. Krauss, I V. C. Weiss, T. A. Edison, J. V. Sengers, and K. Stephan. Transport Properties of 1,1-Difluoroethane (R152a). Int. J. Thermophys, 17:731–757, 1996. doi:10.1007/BF01439187.

[108]

Jiangtao Wu and Yong Zhou. An Equation of State for Fluoroethane (R161). Int. J. Thermophys., 33:220–234, 2012. doi:10.1007/s10765-011-1151-3.

[109]

A. Kamei, S. W. Beyerlein, and R. T Jacobsen. Application of Nonlinear Regression in the Development of a Wide Range Formulation for HCFC-22. Int. J. Thermophys., 16(5):1155–1164, 1995. doi:10.1007/BF02081283.

[110]

Steven G. Penoncello, Eric W. Lemmon, Richard T Jacobsen, and Zhengjun Shan. A Fundamental Equation for Trifluoromethane (R-23). J. Phys. Chem. Ref. Data, 32(4):1473–1499, 2003. doi:10.1063/1.1559671.

[111]

Zhengjun Shan, Steven G Penoncello, and Richard T Jacobsen. A generalized model for viscosity and thermal conductivity of trifluoromethane (R-23). ASHRAE Transactions, 106:757, 2000.

[112]

Xinfang Rui, Jiang Pan, and Yugang Wang. An equation of state for the thermodynamic properties of 1,1,1,2,3,3-hexafluoropropane (R236ea). Fluid Phase Equilib., 341:78–85, 2013. doi:10.1016/j.fluid.2012.12.026.

[113]

Jiang Pan, Xinfang Rui, Xiaodong Zhao, and Liming Qiu. An equation of state for the thermodynamic properties of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). Fluid Phase Equilib., 321:10–16, 2012. doi:10.1016/j.fluid.2012.02.012.

[114]

Yong Zhou & Eric W. Lemmon. Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca). Int. J. Thermophys., 37:1–11, 2016. doi:10.1007/s10765-016-2039-z.

[115]

Ryo Akasaka, Yong Zhou, and Eric W. Lemmon. A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa). J. Phys. Chem. Ref. Data, 44:013104, 2015. doi:10.1063/1.4913493.

[116]

R. Tillner-Roth and A. Yokozeki. An international standard equation of state for difluoromethane (R-32) for temperatures from the triple point at 136.34 K to 435 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data, 26(6):1273–1328, 1997. doi:10.1063/1.556002.

[117]

E.W. Lemmon. Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C. Int. J. Thermophys., 24(4):991–1006, 2003. doi:10.1023/A:1025048800563.

[118]

V.Z. Geller, B.Z. Nemzer, and U.V. Cheremnykh. Thermal Conductivity of the Refrigerant mixtures R404A, R407C, R410A, and R507A. Int. J. Thermophys., 22:1034–1043, 2001. doi:10.1023/A:1010691504352.

[119]

V. Geller. Viscosity of Mixed Refrigerants R404A, R407C, R410A, and R507A. In 2000 International Refrigeration Conferences at Purdue University. 2000.

[120]

M. Okada, T. Shibata, Y. Sato, and Y. Higashi. Surface Tension of HFC Refrigerant Mixtures. Int. J. Thermophys., 20(1):119–127, 1999. doi:10.1023/A:1021482231102.

[121]

Monika Thol, Eric W. Lemmon, and Roland Span. Equation of State for a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden HT 55 (Perfluoropolyether). Unpublished, 2012.

[122]

Kehui Gao, Jiangtao Wu, Penggang Zhang, and Eric W. Lemmon. A Helmholtz Energy Equation of State for Sulfur Dioxide. J. Chem. Eng. Data, 2016.

[123]

C. Guder and W. Wagner. A Reference Equation of State for the Thermodynamic Properties of Sulfur Hexafluoride SF6 for Temperatures from the Melting Line to 625 K and Pressures up to 150 MPa. J. Phys. Chem. Ref. Data, 38(1):33–94, 2009. doi:10.1063/1.3037344.

[124]

M. J. Assael, I. A. Koini, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa. J. Phys. Chem. Ref. Data, 41(2):023104–1:9, 2012. doi:10.1063/1.4708620.

[125]

S.E. Quiñones-Cisneros, M.L. Huber, and U.K. Deiters. Correlation for the Viscosity of Sulfur Hexafluoride (SF6) from the Triple Point to 1000 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data, 41(2):023102–1:11, 2012. doi:10.1063/1.3702441.

[126]

M. J. Assael, S. K. Mylona, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Toluene from the Triple Point to 1000 K and up to 1000 MPa. J. Phys. Chem. Ref. Data, 41(2):023101–1:12, 2012. doi:10.1063/1.3700155.

[127]

S. Avgeri, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of Toluene from the Triple Point to 675 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 44:033101, 2015. doi:10.1063/1.4926955.

[128]

W. Wagner and A. Pruß. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data, 31:387–535, 2002. doi:10.1063/1.1461829.

[129]

M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, and E. Vogel. New International Formulation for the Thermal Conductivity of H2O. J. Phys. Chem. Ref. Data, 41(3):033102–1:23, 2012. doi:10.1063/1.4738955.

[130]

M.L. Huber, R.A. Perkins, A. Laesecke, D.G. Friend, J.V. Sengers, M.J Assael, I.M. Metaxa, E. Vogel, R. Mareš, and K. Miyagawa. New International Formulation for the Viscosity of H2O. J. Phys. Chem. Ref. Data, 38(2):101–125, 2009. doi:10.1063/1.3088050.

[131]

IAPWS. 2011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance. 2011.

[132]

F. L. Cao, X. Y. Meng, J. T. Wu, and V. Vesovic. Reference Correlation of the Viscosity of meta-Xylene from 273 to 673 K and up to 200 MPa. J. Phys. Chem. Ref. Data, 45:013103, 2016. doi:10.1063/1.4941241.

[133]

R.A. Perkins, M.L.V. Ramires, C.A. Nieto de Castro, and L. Cusco. Measurement and Correlation of the Thermal Conductivity of Butane from 135 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47(5):1263–1271, 2002. doi:10.1021/je0101202.

[134]

E. Vogel, C. Kuechenmeister, and E. Bich. Viscosity for n-Butane in the Fluid Region. High Temp. - High Pressures, 31(2):173–186, 1999. doi:10.1068/htrt154.

[135]

M.L. Huber and R.A. Perkins. Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib., 227:47–55, 2005. doi:10.1016/j.fluid.2004.10.031.

[136]

Marcia L. Huber, Arno Laesecke, and Hong Wei Xiang. Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib., 224:263–270, 2004. doi:10.1016/j.fluid.2004.07.012.

[137]

Eric W. Lemmon and Marcia L. Huber. Thermodynamic Properties of n-Dodecane. Energy & Fuels, 18:960–967, 2004. doi:10.1021/ef0341062.

[138]

Marcia L. Huber, Arno Laesecke, and Richard Perkins. Transport Properties of n-Dodecane. Energy & Fuels, 18:968–975, 2004. doi:10.1021/ef034109e.

[139]

R. Span and W. Wagner. Equations of State for Technical Applications. II. Results for Nonpolar Fluids. Int. J. Thermophys., 24:41–109, 2003. doi:10.1023/A:1022310214958.

[140]

M. Jaeschke and P. Schley. Ideal-Gas Thermodynamic Properties for Natural-Gas Applications. Int. J. Thermophys., 16(6):1381–1392, 1995. doi:10.1007/BF02083547.

[141]

M. J. Assael, I. Bogdanou, S. K. Mylona, M. L. Huber, R. A. Perkins, and V. Vesovic. Reference Correlation of the Thermal Conductivity of n-Heptane from the Triple Point to 600 K and up to 250 MPa. J. Phys. Chem. Ref. Data, 42(2):023101–1:9, 2013. doi:10.1063/1.4794091.

[142]

E. K. Michailidou, M. J. Assael, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins. Reference Correlation of the Viscosity of n-Heptane from the Triple Point to 600 K and up to 248 MPa. J. Phys. Chem. Ref. Data, 43:023103, 2014. doi:10.1063/1.4875930.

[143]

M. Thol, Y. Wang, E.W. Lemmon, and R. Span. Fundamental Equations of State for Hydrocarbons. Part II. n-Hexane. Fluid Phase Equilib., 2019.

[144]

M. J. Assael, S. K. Mylona, Ch. A. Tsiglifisi, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of n-Hexane from the Triple Point to 600 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 42(1):013106–1:8, 2013. doi:10.1063/1.4793335.

[145]

E. K. Michailidou, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of n-Hexane from the Triple Point to 600 K and up to 100 MPa. J. Phys. Chem. Ref. Data, 42(3):033104:1–12, 2013. doi:10.1063/1.4818980.

[146]

R. Beckmueller, M. Thol, E.W. Lemmon, and R. Span. Fundamental Equation of State for n-Octane. Int. J. Therrmophys., 2019.

[147]

M. Thol, T. Uhde, E.W. Lemmon, and R. Span. Fundamental Equations of State for Hydrocarbons. Part I. n-Pentane. Fluid Phase Equilib., 2019.

[148]

Eric W. Lemmon, Mark O. McLinden, and Wolfgang Wagner. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54:3141–3180, 2009. doi:10.1021/je900217v.

[149]

Kenneth N. Marsh, Richard A. Perkins, and Maria L. V. Ramires. Measurement and Correlation of the Thermal Conductivity of Propane from 86 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47:932–940, 2002. doi:10.1021/je010001m.

[150]

E. Vogel, C. Küchenmeister, E. Bich, and A. Laesecke. Reference Correlation of the Viscosity of Propane. J. Phys. Chem. Ref. Data, 27:947–970, 1998. 5. doi:10.1063/1.556025.

[151]

I. S. Aleksandrov, A. A. Gerasimov, and B. A. Grigor'ev. Using Fundamental Equations of State for Calculating the Thermodynamic Properties of Normal Undecane. Thermal Engineering, 58(8):691–698, 2011. doi:10.1134/S0040601511080027.

[152]

F. L. Cao, X. Y. Meng, J. T. Wu, and V. Vesovic. Reference Correlation of the Viscosity of ortho-Xylene from 273 to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 45:023102, 2016. doi:10.1063/1.4945663.

[153]

B. Balogun, N. Riesco, and V. Vesovic. Reference Correlation of the Viscosity of para-Xylene from the Triple Point to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 44:013103, 2015. doi:10.1063/1.4908048.

[154]

O. Kunz, R. Klimeck, W. Wagner, and M. Jaeschke. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. VDI Verlag GmbH, Düsseldorf, 2007.

[155]

O. Kunz and W. Wagner. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data, 57:3032–3091, 2012. doi:10.1021/je300655b.

[156]

Eric W. Lemmon and Richard T. Jacobsen. Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a. J. Phys. Chem. Ref. Data, 33(2):593–620, 2004. doi:10.1063/1.1649997.

[157]

E. W. Lemmon and R. T Jacobsen. A Generalized Model for the Thermodynamic Properties of Mixtures. Int. J. Thermophys., 20(3):825–835, 1999. doi:10.1023/A:1022627001338.

[158]

Georg Johannes Gernert. A New Helmholtz Energy Model for Humid Gases and CCS Mixtures. PhD thesis, Ruhr-Universität Bochum, 2013.

[159]

Ian H. Bell and Eric W. Lemmon. Automatic fitting of binary interaction parameters for multi-fluid Helmholtz-energy-explicit mixture models. J. Chem. Eng. Data, 2016. doi:10.1021/acs.jced.6b00257.

[160]

Ryo Akasaka. A Thermodynamic Property Model for the R-134a/245fa Mixtures. In 15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014. 2014.

[161]

Ryo Akasaka. Thermodynamic property models for the difluoromethane (R-32) + trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and difluoromethane + 2,3,3,3-tetrafluoropropene (R-1234yf) mixtures. Fluid Phase Equilib., 358:98–104, 2013. doi:10.1016/j.fluid.2013.07.057.

[162]

Sebastian Herrmann, Hans-Joachim Kretzschmar, and Donald P. Gatley. Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice (RP-1485). HVAC&R Research, 15(5):961–986, 2009. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/10789669.2009.10390874, doi:10.1080/10789669.2009.10390874.

[163]

Åke Melinder. Properties of Secondary Working Fluids for Indirect Systems. IIF-IIR Publishing, 2010.

[164]

Morten Juel Skovrup. SecCool Properties v1.33. IPU Refrigeration and Energy Technology, 2013. URL: http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx.

[165]

Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: Open source scientific tools for Python. 2001–. URL: http://www.scipy.org/.

[166]

Jaroslav Pátek and Jaroslav Klomfar. A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range. Int. J. Refrig., 29(4):566–578, June 2006. doi:10.1016/j.ijrefrig.2005.10.007.

[167]

Matthis Thorade and Ali Saadat. Partial derivatives of thermodynamic state properties for dynamic simulation. Environmental Earth Sciences, April 2013. URL: http://link.springer.com/10.1007/s12665-013-2394-z, doi:10.1007/s12665-013-2394-z.

[168]

Ian H. Bell and Andreas Jäger. Helmholtz Energy Transformations of Common Cubic Equations of State for Use with Pure Fluids and Mixtures. J. Res. NIST, 2016. doi:10.6028/jres.121.011.