Bibliography

References

[1]Matthis Thorade and Ali Saadat. Partial derivatives of thermodynamic state properties for dynamic simulation. Environmental Earth Sciences, April 2013. URL: http://link.springer.com/10.1007/s12665-013-2394-z, doi:10.1007/s12665-013-2394-z.
[2]Sebastian Herrmann, Hans-Joachim Kretzschmar, and Donald P. Gatley. Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice (RP-1485). HVAC&R Research, 15(5):961–986, 2009. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/10789669.2009.10390874, doi:10.1080/10789669.2009.10390874.
[3]Åke Melinder. Properties of Secondary Working Fluids for Indirect Systems. IIF-IIR Publishing, 2010.
[4]Morten Juel Skovrup. SecCool Properties v1.33. IPU Refrigeration and Energy Technology, 2013. URL: http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/seccool.aspx.
[5]Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: Open source scientific tools for Python. 2001–. URL: http://www.scipy.org/.
[6]Technical Data Sheet. Aspen Petroleum AB, 2001.
[7]Technical Data Sheet. The Dow Chemical Company, 1997.
[8]Technical Data Sheet. Dynalene Inc., 2014.
[9]Technical Information. 3M Company, 2007.
[10]Technical Information. Hydro Chemicals, 2000.
[11]Ernst Schmidt. Properties of Water and Steam in SI-Units. Springer, 2nd edition, 1979.
[12]Alexis B. Zavoico. Solar Power Tower Design Basis Document. Technical Report, Sandia National Laboratories, July 2001. URL: http://prod.sandia.gov/techlib/access-control.cgi/2001/012100.pdf, doi:10.2172/786629.
[13]Technical Information. Sulzer Chemtech AG, 1999.
[14]Thermal Properties Calculator v6.4. Paratherm Ltd., 2013. URL: http://paracalc.paratherm.com.
[15]Therminol Heat Transfer Reference Disk v5.1. Eastman Chemical Company, 2014. URL: http://www.therminol.com/resources/therminol-reference-disk.
[16]Technical Information. Hoechst AG, 1995.
[17]Technical Data Sheet. Chevron Products Company, 2004.
[18]Technical Information. Tyforop Chemie Gmbh, 1999.
[19]W. Wagner and A. Pruβ. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data, 31:387–535, 2002. doi:10.1063/1.1461829.
[20]Technical Information. Arteco NV/SA, 2010.
[21]Jaroslav Pátek and Jaroslav Klomfar. A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range. Int. J. Refrig., 29(4):566–578, June 2006. doi:10.1016/j.ijrefrig.2005.10.007.
[22]Technical Data Sheet. Kemira Chemicals OY, 1998.
[23]Michael Kauffeld. RP-1166—Behavior of Ice Slurries in Thermal Storage Systems. Technical Report, Danish Technological Institute, 2001. Sponsored by ASHRAE Technical Committee 6.9 Thermal Storage.
[24]Mostafa H. Sharqawy, John H. Lienhard V, and Syed M. Zubair. Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16:354–380, 2010. doi:10.5004/dwt.2010.1079.
[25]Ewald Preisegger, Felix Flohr, Gernot Krakat, Andreas Glück, and Dietmar Hunold. VDI Heat Atlas., chapter D4 Properties of Industrial Heat Transfer Media, pages 419–512. Springer, Berlin Heidelberg, 2nd edition, 2010. doi:10.1007/978-3-540-77877-6_20.
[26]American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2001 ASHRAE Handbook: Fundamentals. volume 111. ASHRAE, 2001. ISBN 9781883413880.
[27]Technical Data Sheet. Clariant GmbH, 2000.
[28]Technical Data Sheet. pro Kühlsole GmbH, 2005.
[29]O. Kunz, R. Klimeck, W. Wagner, and M. Jaeschke. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. VDI Verlag GmbH, 2007.
[30]O. Kunz and W. Wagner. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data, 57:3032–3091, 2012. doi:10.1021/je300655b.
[31]Eric W. Lemmon, Richard T. Jacobsen, Steven G. Penoncello, and Daniel G. Friend. Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa. J. Phys. Chem. Ref. Data, 29(3):331–385, 2000. doi:10.1063/1.1285884.
[32]Eric W. Lemmon and Richard T. Jacobsen. Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a. J. Phys. Chem. Ref. Data, 33(2):593–620, 2004. doi:10.1063/1.1649997.
[33]E. W. Lemmon and R. T Jacobsen. A Generalized Model for the Thermodynamic Properties of Mixtures. Int. J. Thermophys., 20(3):825–835, 1999. doi:10.1023/A:1022627001338.
[34]Georg Johannes Gernert. A New Helmholtz Energy Model for Humid Gases and CCS Mixtures. PhD thesis, Ruhr-Universität Bochum, 2013.
[35]Ian H. Bell and Eric W. Lemmon. Automatic fitting of binary interaction parameters for multi-fluid Helmholtz-energy-explicit mixture models. J. Chem. Eng. Data, 2016, submitted.
[36]Ryo Akasaka. A Thermodynamic Property Model for the R-134a/245fa Mixtures. In 15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014. 2014.
[37]Ryo Akasaka. Thermodynamic property models for the difluoromethane (R-32) + trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and difluoromethane + 2,3,3,3-tetrafluoropropene (R-1234yf) mixtures. Fluid Phase Equilib., 358:98–104, 2013. doi:10.1016/j.fluid.2013.07.057.
[38]Eric W. Lemmon and E. Christian Ihmels. Thermodynamic properties of the butenes Part II. Short fundamental equations of state. Fluid Phase Equilib., 228-229:173–187, 2005. doi:10.1016/j.fluid.2004.09.004.
[39]A. Mulero, I. Cachadiña, and M. I. Parra. Recommended Correlations for the Surface Tension of Common Fluids. J. Phys. Chem. Ref. Data, 41(4):043105–1:13, 2012. doi:10.1063/1.4768782.
[40]E.W. Lemmon and R. Span. Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data, 51:785–850, 2006. doi:10.1021/je050186n.
[41]E. W. Lemmon and R. T Jacobsen. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. Int. J. Thermophys., 25(1):21–69, 2004. doi:10.1023/B:IJOT.0000022327.04529.f3.
[42]R. Tillner-Roth, F. Harms-Watzenberg, and H.D. Baehr. Eine neue Fundamentalgleichung fur Ammoniak (A new Fundamental Equation of State for Ammonia). In Deutscher Kaelte- und Klimatechnischer Verein Tagung 1993. 1993.
[43]R. Tufeu, D.Y. Ivanov, Y. Garrabos, and B. Le Neindre. Thermal Conductivity of Ammonia in a Large Temperature and Pressure Range Including the Critical Region. Bereicht der Bunsengesellschaft Phys. Chem., 88:422–427, 1984. doi:10.1002/bbpc.19840880421.
[44]A. Fenghour, W.A. Wakeham, V. Vesovic, J.T.R. Watson, J. Millat, and E. Vogel. The Viscosity of Ammonia. J. Phys. Chem. Ref. Data, 24:1649–1667, 1995. 5. doi:10.1063/1.555961.
[45]Ch. Tegeler, R. Span, and W. Wagner. A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 28:779–850, 1999. doi:10.1063/1.556037.
[46]M. Thol, E.W. Lemmon, and R. Span. Equation of state for benzene for temperatures from the melting line up to 725 K with pressures up to 500 MPa. High Temperatures-High Pressures, 41:81–97, 2012.
[47]M.J. Assael, E. Mihailidou, M.L. Huber, and R.A. Perkins. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 41:043102–1:9, 2012. doi:10.1063/1.4755781.
[48]S. Avgeri, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of Benzene from the Triple Point to 675 K and up to 300 MPa. J. Phys. Chem. Ref. Data, 43:033103, 2014. doi:10.1063/1.4892935.
[49]R. Span and W. Wagner. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25:1509–1596, 1996. doi:10.1063/1.555991.
[50]G. Scalabrin, P. Marchi, F. Finezzo, and R. Span. A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide with an Optimized Functional Form. J. Phys. Chem. Ref. Data, 35(4):1549–1575, 2006. doi:10.1063/1.2213631.
[51]A. Fenghour, W.A. Wakeham, and V. Vesovic. The Viscosity of Carbon Dioxide. J. Phys. Chem. Ref. Data, 27(1):31–44, 1998. 5. doi:10.1063/1.556013.
[52]Susane F. Barreiros, Jorge C. G. Calado, and Manuel Nunes da Ponte. The Melting Curves of Carbon Monoxide. J. Chem. Thermodyn., 14:1197–1198, 1982. doi:10.1016/0021-9614(82)90044-1.
[53]Yong Zhou, Jun Liu, Steven G. Penoncello, and Eric W. Lemmon. An Equation of State for the Thermodynamic Properties of Cyclohexane. J. Phys. Chem. Ref. Data, 43:043105–1:12, 2014. doi:10.1063/1.4900538.
[54]U. Tariq, A. R. B. Jusoh, N. Riesco, and V. Vesovic. Reference Correlation of the Viscosity of Cyclohexane from the Triple Point to 700 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 43(3):033101–1:18, 2014. doi:10.1063/1.4891103.
[55]S. G. Penoncello, R. T Jacobsen, and A. R. H. Goodwin. A Thermodynamic Property Formulation for Cyclohexane. Int. J. Thermophys., 16(2):519–531, 1995. doi:10.1007/BF01441918.
[56]Axel Polt, Bernhard Platzer, and Gerd Maurer. Parameter der thermischen Zustandsgleichung von Bender für 14 mehratomige reine Stoffe. Chem. Technik, 22:216–224, 1992.
[57]A. Mulero and I. Cachadiña. Recommended Correlations for the Surface Tension of Several Fluids Included in the REFPROP Program. J. Phys. Chem. Ref. Data, 43:023104–1:8, 2014. doi:10.1063/1.4878755.
[58]Holger Gedanitz, María J. Dávila, and Eric W. Lemmon. Speed of sound measurements and a fundamental equation of state for cyclopentane. J. Chem. Eng. Data, 60(5):1331–1337, 2015. doi:10.1021/je5010164.
[59]C-M Vassiliou, MJ Assael, ML Huber, and RA Perkins. Reference Correlations of the Thermal Conductivity of Cyclopentane, iso-Pentane, and n-Pentane. Journal of Physical and Chemical Reference Data, 44(3):033102, 2015.
[60]Ting Horng Chung, Mohammad Ajlan, Lloyd L Lee, and Kenneth E Starling. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res., 27(4):671–679, 1988. doi:10.1021/ie00076a024.
[61]Monika Thol. Empirical Multiparameter Equations of State Based on Molecular Simulation and Hybrid Data Sets. PhD thesis, Ruhr-Universität Bochum, 2015.
[62]P. Colonna, N.R. Nannan, A. Guardone, and E.W. Lemmon. Multiparameter equations of state for selected siloxanes. Fluid Phase Equilib., 244:193–211, 2006. doi:10.1016/j.fluid.2006.04.015.
[63]P. Colonna, N.R. Nannan, and A. Guardone. Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,...,3, and [O-Si-(CH3)2]6. Fluid Phase Equilib., 263:115–130, 2008. doi:10.1016/j.fluid.2007.10.001.
[64]I.A. Richardson, J.W. Leachman, and E.W. Lemmon. Fundamental Equation of State for Deuterium. J. Phys. Chem. Ref. Data, 43:013103, 2014. doi:10.1063/1.4864752.
[65]Monika Thol, Lorenzo Piazza, and Roland Span. A New Functional Form for Equations of State for Some Weakly Associating Fluids. Int. J. Thermophys., 35(5):783–811, 2014. URL: http://dx.doi.org/10.1007/s10765-014-1633-1, doi:10.1007/s10765-014-1633-1.
[66]Yong Zhou, Jiangtao Wu, and Eric W. Lemmon. Thermodynamic Properties of Dimethyl Carbonate. J. Phys. Chem. Ref. Data, 40(4):043106–1:11, 2011. doi:10.1063/1.3664084.
[67]Jiangtao Wu, Yong Zhou, and Eric W. Lemmon. An Equation of State for the Thermodynamic Properties of Dimethyl Ether. J. Phys. Chem. Ref. Data, 40(2):023104–1:16, 2011. doi:10.1063/1.3582533.
[68]Xianyang Meng, Jianbo Zhang, Jiangtao Wu, and Zhigang Liu. Experimental Measurement and Modeling of the Viscosity of Dimethyl Ether. J. Chem. Eng. Data, 57:988–993, 2012. doi:10.1021/je201297j.
[69]D. Buecker and W. Wagner. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data, 35(1):205–266, 2006. doi:10.1063/1.1859286.
[70]Daniel G. Friend, Hepburn Ingham, and James F. Ely. Thermophysical Properties of Ethane. J. Phys. Chem. Ref. Data, 20(2):275–347, 1991. doi:10.1063/1.555881.
[71]J. A. Schroeder, S. G. Penoncello, and J. S. Schroeder. A Fundamental Equation of State for Ethanol. J. Phys. Chem. Ref. Data, 43(4):043102, 2014. doi:10.1063/1.4895394.
[72]M. J. Assael, E. A. Sykioti, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42(2):023102–1:10, 2013. doi:10.1063/1.4797368.
[73]S. B. Kiselev, J. F. Ely, I. M. Abdulagatov, and M. L. Huber. Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n-Alkanols. Ind. Eng. Chem. Res., 44:6916–6927, 2005. doi:10.1021/ie050010e.
[74]T. F. Sun, J. A. Schouten, N. J. Trappeniers, and S. N. Biswas. Accurate Measurement of the Melting Line of Methanol and Ethanol at Pressures up to 270 MPa. Ber. Bunsenges. Phys. Chem., 92:652–655, 1988. doi:10.1002/bbpc.198800153.
[75]Yong Zhou, Jiangtao Wu, and Eric W. Lemmon. Thermodynamic Properties of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene. J. Phys. Chem. Ref. Data, 41(2):023103–1 – 023103–26, 2012. doi:10.1063/1.3703506.
[76]S. K. Mylona, K. D. Antoniadis, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlations of the Thermal Conductivity of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene from the Triple Point to 700 K and Moderate Pressures. J. Phys. Chem. Ref. Data, 43:043104, 2014. doi:10.1063/1.4901166.
[77]J. Smukala, R. Span, and W. Wagner. New Equation of State for Ethylene Covering the Fluid Region for Temperatures From the Melting Line to 450 K at Pressures up to 300 MPa. J. Phys. Chem. Ref. Data, 29(5):1053–1121, 2000. doi:10.1063/1.1329318.
[78]Monika Thol, Gábor Rutkai, Andreas Köster, Mirco Kortmann, Roland Span, and Jadran Vrabec. Fundamental equation of state for ethylene oxide based on a hybrid dataset. Chem. Eng. Sci., 121:87–99, 2015. doi:10.1016/j.ces.2014.07.051.
[79]Monika Thol, Gábor Rutkai, Andreas Köster, Mirco Kortmann, Roland Span, and Jadran Vrabec. Corrigendum to ‘Fundamental equation of state for ethylene oxide based on a hybrid dataset’. Chem. Eng. Sci., 134:887–890, 2015. doi:10.1016/j.ces.2015.06.020.
[80]K.M. de Reuck. Fluorine: International Thermodynamic Tables of the Fluid State - 11. Blackwell Scientific Publications, 1990.
[81]Ryo Akasaka and Yohei Kayukawa. A fundamental equation of state for trifluoromethyl methyl ether (HFE-143m) and its application to refrigeration cycle analysis. Int. J. Refrig., 35:1003–1013, 2012. doi:10.1016/j.ijrefrig.2012.01.003.
[82]Stefan Herrig. Preliminary equation of state for Heavy Water. Preliminary equation of state for Heavy Water, 2015.
[83]IAPWS. Revised release on viscosity and thermal conductivity of heavy water substance. 2007.
[84]IAPWS. Iapws release on surface tension of heavy water substance. 1994.
[85]D.O. Ortiz-Vega, K.R. Hall, V.D. Arp, and E.W. Lemmon. Equation of state for Helium. Unpublished - coefficients from REPROP with permission, 2013.
[86]B.A. Hands and V.D. Arp. A Correlation of Thermal Conductivity Data for Helium. Cryogenics, 21(12):697–703, 1981. doi:10.1016/0011-2275(81)90211-3.
[87]V.D. Arp, R.D. McCarty, and D.G Friend. Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa - NIST Technical Note 1334 (revised). Technical Report, NIST, 1998.
[88]Frédéric Datchi, Paul Loubeyre, and René LeToullec. Extended and accurate determination of the melting curves of argon, helium, ice (H$_2$O) and hydrogen (H$_2$). Physical Review B, 61(10):6535–6546, 2000. doi:10.1103/PhysRevB.61.6535.
[89]J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, and E.W. Lemmon. Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen. J. Phys. Chem. Ref. Data, 38(3):721–748, 2009. doi:10.1063/1.3160306.
[90]M. J. Assael, J.-A. M. Assael, M. L. Huber, R. A. Perkins, and Y. Takata. Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa. J. Phys. Chem. Ref. Data, 40(3):033101–1:13, 2011. doi:10.1063/1.3606499.
[91]Chris D. Muzny, Marcia L. Huber, and Andrei F. Kazakov. Correlation for the Viscosity of Normal Hydrogen Obtained from Symbolic Regression. J. Chem. Eng. Data, 2013. doi:10.1021/je301273j.
[92]Sergio E. Quiñones-Cisneros, Kurt A. G. Schmidt, Binod R. Giri, Pierre Blais, and Robert A. Marriott. Reference Correlation for the Viscosity Surface of Hydrogen Sulfide. J. Chem. Eng. Data, 57:3014–3018, 2012. doi:10.1021/je300601h.
[93]D. Buecker and W. Wagner. Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data, 35(2):929–1019, 2006. doi:10.1063/1.1901687.
[94]R.A. Perkins. Measurement and Correlation of the Thermal Conductivity of Isobutane from 114 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47(5):1272–1279, 2002. doi:10.1021/je010121u.
[95]E. Vogel, C. Kuechenmeister, and E. Bich. Viscosity Correlation for Isobutane over Wide Ranges of the Fluid Region. Int. J. Thermophys, 21(2):343–356, 2000. doi:10.1023/A:1006623310780.
[96]Larry E. Reeves, Gene J. Scott, and Stanley E. Babb Jr. Melting Curves of Pressure Transmitting Fluids. J. Chem. Phys., 40:3662–3666, 1964. doi:10.1063/1.1725068.
[97]A. Michels and C. Prins. The Melting Lines of Argon, Krypton and Xenon up to 1500 atm; Representation of the Results by a Law of Corresponding States. Physica, 28:101–116, 1962. doi:10.1016/0031-8914(62)90096-4.
[98]M. Thol, S. Herrig, M. Körber, F.H. Dubberke, R. Span, and J. Vrabec. Speed of sound measurements and a fundamental equation of state for octamethyltrisiloxane. J. Chem. Eng. Data, 2016, to be submitted.
[99]Monika Thol. Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. Fluid Phase Equilib., 2015. doi:10.1016/j.fluid.2015.09.047.
[100]U. Setzmann and W. Wagner. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20(6):1061–1151, 1991. doi:10.1063/1.555898.
[101]Daniel G. Friend, James F. Ely, and Hepburn Ingham. Thermophysical Properties of Methane. J. Phys. Chem. Ref. Data, 1989. doi:10.1063/1.555828.
[102]Sergio E. Quiñones-Cisneros and Ulrich K. Deiters. Generalization of the Friction Theory for Viscosity Modeling. J. Phys. Chem. B, 110:12820–12834, 2006. doi:10.1021/jp0618577.
[103]Evan H. Abramson. Melting curves of argon and methane. High Pressure Research, 31(4):549–554, 2011. doi:10.1080/08957959.2011.629617.
[104]L. Piazza and R. Span. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilib., 349:12–24, 2013. doi:10.1016/j.fluid.2013.03.024.
[105]E. A. Sykioti, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Methanol from the Triple Point to 660 K and up to 245 MPa. J. Phys. Chem. Ref. Data, 42:043101, 2013. doi:10.1063/1.4829449.
[106]Hong Wei Xiang, Arno Laesecke, and Marcia L. Huber. A New Reference Correlation for the Viscosity of Methanol. J. Phys. Chem. Ref. Data, 35(4):1597–1:24, 2006. doi:10.1063/1.2360605.
[107]K.M. de Reuck and R.J.B. Craven. Methanol: International Thermodynamic Tables of the Fluid State - 12. Blackwell Scientific Publications, 1993.
[108]Marcia L. Huber, Eric W. Lemmon, Andrei Kazakov, Lisa S. Ott, and Thomas J. Bruno. Model for the Thermodynamic Properties of a Biodiesel Fuel. Energy & Fuels, 23:3790–3797, 2009. doi:10.1021/ef900159g.
[109]R. Katti, R.T. Jacobsen, R.B. Stewart, and M. Jehangiri. Thermodynamic Properties of Neon for Temperatures from the Triple Point to 700 K at Pressures to 700 MPa. Advances in Cryogenic Engineering, 31:1189–1197, 1986. doi:10.1007/978-1-4613-2213-9_132.
[110]David Santamaría-Pérez, Goutam Dev Mukherjee, Beate Schwager, and Reinhard Boehler. High-pressure melting curve of helium and neon: Deviations from corresponding states theory. Physical Review B, 81:214101:1–5, 2010. doi:10.1103/PhysRevB.81.214101.
[111]Roland Span, Eric W. Lemmon, Richard T. Jacobsen, Wolfgang Wagner, and Akimichi Yokozeki. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data, 29:1361–1433, 2000. doi:10.1063/1.1349047.
[112]Mark O. McLinden, Richard A. Perkins, Eric W. Lemmon, and Tara J. Fortin. Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State. J. Chem. Eng. Data, 60(12):3646–3659, 2015. doi:10.1021/acs.jced.5b00623.
[113]R. Schmidt and W. Wagner. A New Form of the Equation of State for Pure Substances and its Application to Oxygen. Fluid Phase Equilib., 19(3):175–200, 1985. doi:10.1016/0378-3812(85)87016-3.
[114]Richard B. Stewart, Richard T. Jacobsen, and W. Wagner. Thermodynamic Properties of Oxygen from the Triple Point to 300 K with Pressures to 80 MPa. J. Phys. Chem. Ref. Data, 20(5):917–1021, 1991. doi:10.1063/1.555897.
[115]Ben A Younglove. Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. Technical Report, DTIC Document, 1982.
[116]E.W. Lemmon, U. Overhoff, M.O. McLinden, and W. Wagner. Equation of state for propylene. Personal communication with Eric Lemmon, 2010.
[117]Marcia L. Huber, Arno Laesecke, and Richard A. Perkins. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Ind. Eng. Chem. Res., 42:3163–3178, 2003. doi:10.1021/ie0300880.
[118]R.T Jacobsen, S.G. Penoncello, and E.W. Lemmon. A Fundamental Equation for Trichlorofluoromethane (R-11). Fluid Phase Equilib., 80:45–56, 1992. doi:10.1016/0378-3812(92)87054-Q.
[119]Mark O. McLinden, Sanford A. Klein, and Richard A. Perkins. An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. Int. J. Refrig., 23:43–63, 2000. doi:10.1016/S0140-7007(99)00024-9.
[120]S.A. Klein, M.O. McLinden, and A. Laesecke. An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures. Int. J. Refrig., 20:208–217, 1997. doi:10.1016/S0140-7007(96)00073-4.
[121]Volker Marx, Andreas Pruss, and Wolfgang Wagner. Neue Zustandsgleichung für R 12, R 22, R 11 und R 113 - Beschreibung des therodynamischen Zustandsverhaltens bei Temperaturen bis 525 K und Druücken bis 200 MPa. volume 19. VDI Verlag, 1992.
[122]B. Platzer, A. Polt, and G. Maurer. Thermophysical Properties of Refrigerants. Springer-Verlag, 1990. doi:10.1007/978-3-662-02608-3.
[123]Eric W. Lemmon and Roland Span. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R13I1. J. Chem. Eng. Data, 2016, submitted. doi:10.1021/acs.jced.5b00684.
[124]Ben A. Younglove. An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2-Dichloro-1,1,1-Trifluoroethane). J. Phys. Chem. Ref. Data, 23(5):731–779, 1994. doi:10.1063/1.555950.
[125]Arno Laesecke, Richard A. Perkins, and John B. Howley. An improved correlation for the thermal conductivity of HCFC123 (2,2-dichloro-1,1,1-trifluoroethane). Int. J. Refrig., 19(4):231–238, 1996. doi:10.1016/0140-7007(96)00019-9.
[126]Y. Tanaka and T. Sotani. Thermal Conductivity and Viscosity of 2,2-Dichloro-1,1,1-Trifluoroethane (HCFC-123). Int. J. Thermophys., 17(2):293–328, 1996. doi:10.1007/BF01443394.
[127]María E. Mondejár, Mark O. McLinden, and Eric W. Lemmon. Thermodynamic Properties of trans-1-Chloro-3,3,3-trifluoropropene (R1233zd(E)): Vapor Pressure, ($p$, ρ, $T$) Behavior, and Speed of Sound Measurements, and Equation of State. J. Chem. Eng. Data, 60:2477–2489, 2015. doi:10.1021/acs.jced.5b00348.
[128]Ian H. Bell and Arno Laesecke. Viscosity of refrigerants and other working fluids from residual entropy scaling . In 16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016. 2016.
[129]Chieko Kondou, Ryuichi Nagata, Noriko Nii, Shigeru Koyama, and Yukihiro Higashi. Surface tension of low GWP refrigerants R1243zf, R1234ze(Z), and R1233zd(E). Int. J. Refrig., 53:80–89, 2015. doi:10.1016/j.ijrefrig.2015.01.005.
[130]M. Richter, M. O. McLinden, and E. W. Lemmon. Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and $p$-ρ-$T$ Measurements and an Equation of State. J. Chem. Eng. Data, 56:3254–3264, 2011. doi:10.1021/je200369m.
[131]Richard A. Perkins and Marcia L. Huber. Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). J. Chem. Eng. Data, 56:4868–4874, 2011. doi:10.1021/je200811n.
[132]Ryo Akasaka, Yukihiro Higashi, and Shigeru Koyama. A Fundamental Equation of State For Low-GWP Refrigerant HFO-1234ze(Z). In 4th IIR Conference on ThermophysicalProperties and Transfer Processes of Refrigerants, Delft, The Netherlands, 2013, TP–052. 2013.
[133]B. de Vries, R. Tillner-Roth, and H.D. Baehr. Thermodynamic Properties of HCFC 124. In 19th International Congress of Refrigeration, The Hague, The Netherlands, 582–589. 1995.
[134]Eric W. Lemmon and Richard T Jacobsen. A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125). J. Phys. Chem. Ref. Data, 34(1):69–108, 2005. doi:10.1063/1.1797813.
[135]Richard A. Perkins and Marcia L. Huber. Measurement and Correlation of the Thermal Conductivity of Pentafluoroethane (R125) from 190 K to 512 K at Pressures to 70 MPa. J. Chem. Eng. Data, 51:898–904, 2006. doi:10.1021/je050372t.
[136]Marcia L. Huber and Arno Laesecke. Correlation for the Viscosity of Pentafluoroethane (R125) from the Triple Point to 500 K at Pressures up to 60 MPa. Ind. Eng. Chem. Res., 45:4447–4453, 2006. doi:10.1021/ie051367l.
[137]Reiner Tillner-Roth and Hans Dieter Baehr. A International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa. J. Phys. Chem. Ref. Data, 23:657–729, 1994. doi:10.1063/1.555958.
[138]Eric W. Lemmon and Richard T. Jacobsen. An International Standard Formulation for the Thermodynamic Properties of 1,1,1-Trifluoroethane (HFC-143a) for Temperatures From 161 to 450 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data, 29(4):521–552, 2000. doi:10.1063/1.1318909.
[139]Stephanie L. Outcalt and Mark O. McLinden. A Modified Benedict-Webb-Rubin Equation of State for the Thermodynamic Properties of R152a (1,1-difluoroethane). J. Phys. Chem. Ref. Data, 25(2):605–636, 1996. doi:10.1063/1.555979.
[140]R. Krauss, I V. C. Weiss, T. A. Edison, J. V. Sengers, and K. Stephan. Transport Properties of 1,1-Difluoroethane (R152a). Int. J. Thermophys, 17:731–757, 1996. doi:10.1007/BF01439187.
[141]Jiangtao Wu and Yong Zhou. An Equation of State for Fluoroethane (R161). Int. J. Thermophys., 33:220–234, 2012. doi:10.1007/s10765-011-1151-3.
[142]A. Kamei, S. W. Beyerlein, and R. T Jacobsen. Application of Nonlinear Regression in the Development of a Wide Range Formulation for HCFC-22. Int. J. Thermophys., 16(5):1155–1164, 1995. doi:10.1007/BF02081283.
[143]Steven G. Penoncello, Eric W. Lemmon, Richard T Jacobsen, and Zhengjun Shan. A Fundamental Equation for Trifluoromethane (R-23). J. Phys. Chem. Ref. Data, 32(4):1473–1499, 2003. doi:10.1063/1.1559671.
[144]Zhengjun Shan, Steven G Penoncello, and Richard T Jacobsen. A generalized model for viscosity and thermal conductivity of trifluoromethane (R-23). ASHRAE Transactions, 106:757, 2000.
[145]Xinfang Rui, Jiang Pan, and Yugang Wang. An equation of state for the thermodynamic properties of 1,1,1,2,3,3-hexafluoropropane (R236ea). Fluid Phase Equilib., 341:78–85, 2013. doi:10.1016/j.fluid.2012.12.026.
[146]Jiang Pan, Xinfang Rui, Xiaodong Zhao, and Liming Qiu. An equation of state for the thermodynamic properties of 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). Fluid Phase Equilib., 321:10–16, 2012. doi:10.1016/j.fluid.2012.02.012.
[147]Yong Zhou & Eric W. Lemmon. Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca). Int. J. Thermophys., 37:1–11, 2016. doi:10.1007/s10765-016-2039-z.
[148]Ryo Akasaka, Yong Zhou, and Eric W. Lemmon. A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa). J. Phys. Chem. Ref. Data, 44:013104, 2015. doi:10.1063/1.4913493.
[149]R. Tillner-Roth and A. Yokozeki. An international standard equation of state for difluoromethane (R-32) for temperatures from the triple point at 136.34 K to 435 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data, 26(6):1273–1328, 1997. doi:10.1063/1.556002.
[150]E.W. Lemmon. Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C. Int. J. Thermophys., 24(4):991–1006, 2003. doi:10.1023/A:1025048800563.
[151]V.Z. Geller, B.Z. Nemzer, and U.V. Cheremnykh. Thermal Conductivity of the Refrigerant mixtures R404A, R407C, R410A, and R507A. Int. J. Thermophys., 22:1034–1043, 2001. doi:10.1023/A:1010691504352.
[152]V. Geller. Viscosity of Mixed Refrigerants R404A, R407C, R410A, and R507A. In 2000 International Refrigeration Conferences at Purdue University. 2000.
[153]M. Okada, T. Shibata, Y. Sato, and Y. Higashi. Surface Tension of HFC Refrigerant Mixtures. Int. J. Thermophys., 20(1):119–127, 1999. doi:10.1023/A:1021482231102.
[154]Monika Thol, Eric W. Lemmon, and Roland Span. Equation of State for a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden HT 55 (Perfluoropolyether). Unpublished, 2012.
[155]Kehui Gao, Jiangtao Wu, Penggang Zhang, and Eric W. Lemmon. A Helmholtz Energy Equation of State for Sulfur Dioxide. J. Chem. Eng. Data, 2016.
[156]C. Guder and W. Wagner. A Reference Equation of State for the Thermodynamic Properties of Sulfur Hexafluoride SF6 for Temperatures from the Melting Line to 625 K and Pressures up to 150 MPa. J. Phys. Chem. Ref. Data, 38(1):33–94, 2009. doi:10.1063/1.3037344.
[157]M. J. Assael, I. A. Koini, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa. J. Phys. Chem. Ref. Data, 41(2):023104–1:9, 2012. doi:10.1063/1.4708620.
[158]S.E. Quiñones-Cisneros, M.L. Huber, and U.K. Deiters. Correlation for the Viscosity of Sulfur Hexafluoride (SF6) from the Triple Point to 1000 K and Pressures to 50 MPa. J. Phys. Chem. Ref. Data, 41(2):023102–1:11, 2012. doi:10.1063/1.3702441.
[159]M. J. Assael, S. K. Mylona, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of Toluene from the Triple Point to 1000 K and up to 1000 MPa. J. Phys. Chem. Ref. Data, 41(2):023101–1:12, 2012. doi:10.1063/1.3700155.
[160]S. Avgeri, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of Toluene from the Triple Point to 675 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 44:033101, 2015. doi:10.1063/1.4926955.
[161]M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, and E. Vogel. New International Formulation for the Thermal Conductivity of H2O. J. Phys. Chem. Ref. Data, 41(3):033102–1:23, 2012. doi:10.1063/1.4738955.
[162]M.L. Huber, R.A. Perkins, A. Laesecke, D.G. Friend, J.V. Sengers, M.J Assael, I.M. Metaxa, E. Vogel, R. Mareš, and K. Miyagawa. New International Formulation for the Viscosity of H2O. J. Phys. Chem. Ref. Data, 38(2):101–125, 2009. doi:10.1063/1.3088050.
[163]IAPWS. 2011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance. 2011.
[164]F. L. Cao, X. Y. Meng, J. T. Wu, and V. Vesovic. Reference Correlation of the Viscosity of meta-Xylene from 273 to 673 K and up to 200 MPa. J. Phys. Chem. Ref. Data, 45:013103, 2016. doi:10.1063/1.4941241.
[165]R.A. Perkins, M.L.V. Ramires, C.A. Nieto de Castro, and L. Cusco. Measurement and Correlation of the Thermal Conductivity of Butane from 135 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47(5):1263–1271, 2002. doi:10.1021/je0101202.
[166]E. Vogel, C. Kuechenmeister, and E. Bich. Viscosity for n-Butane in the Fluid Region. High Temp. - High Pressures, 31(2):173–186, 1999. doi:10.1068/htrt154.
[167]M.L. Huber and R.A. Perkins. Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib., 227:47–55, 2005. doi:10.1016/j.fluid.2004.10.031.
[168]Marcia L. Huber, Arno Laesecke, and Hong Wei Xiang. Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane. Fluid Phase Equilib., 224:263–270, 2004. doi:10.1016/j.fluid.2004.07.012.
[169]Eric W. Lemmon and Marcia L. Huber. Thermodynamic Properties of n-Dodecane. Energy & Fuels, 18:960–967, 2004. doi:10.1021/ef0341062.
[170]Marcia L. Huber, Arno Laesecke, and Richard Perkins. Transport Properties of n-Dodecane. Energy & Fuels, 18:968–975, 2004. doi:10.1021/ef034109e.
[171]R. Span and W. Wagner. Equations of State for Technical Applications. II. Results for Nonpolar Fluids. Int. J. Thermophys., 24:41–109, 2003. doi:10.1023/A:1022310214958.
[172]M. Jaeschke and P. Schley. Ideal-Gas Thermodynamic Properties for Natural-Gas Applications. Int. J. Thermophys., 16(6):1381–1392, 1995. doi:10.1007/BF02083547.
[173]M. J. Assael, I. Bogdanou, S. K. Mylona, M. L. Huber, R. A. Perkins, and V. Vesovic. Reference Correlation of the Thermal Conductivity of n-Heptane from the Triple Point to 600 K and up to 250 MPa. J. Phys. Chem. Ref. Data, 42(2):023101–1:9, 2013. doi:10.1063/1.4794091.
[174]E. K. Michailidou, M. J. Assael, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins. Reference Correlation of the Viscosity of n-Heptane from the Triple Point to 600 K and up to 248 MPa. J. Phys. Chem. Ref. Data, 43:023103, 2014. doi:10.1063/1.4875930.
[175]M. J. Assael, S. K. Mylona, Ch. A. Tsiglifisi, M. L. Huber, and R. A. Perkins. Reference Correlation of the Thermal Conductivity of n-Hexane from the Triple Point to 600 K and up to 500 MPa. J. Phys. Chem. Ref. Data, 42(1):013106–1:8, 2013. doi:10.1063/1.4793335.
[176]E. K. Michailidou, M. J. Assael, M. L. Huber, and R. A. Perkins. Reference Correlation of the Viscosity of n-Hexane from the Triple Point to 600 K and up to 100 MPa. J. Phys. Chem. Ref. Data, 42(3):033104:1–12, 2013. doi:10.1063/1.4818980.
[177]Eric W. Lemmon, Mark O. McLinden, and Wolfgang Wagner. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data, 54:3141–3180, 2009. doi:10.1021/je900217v.
[178]Kenneth N. Marsh, Richard A. Perkins, and Maria L. V. Ramires. Measurement and Correlation of the Thermal Conductivity of Propane from 86 K to 600 K at Pressures to 70 MPa. J. Chem. Eng. Data, 47:932–940, 2002. doi:10.1021/je010001m.
[179]E. Vogel, C. Küchenmeister, E. Bich, and A. Laesecke. Reference Correlation of the Viscosity of Propane. J. Phys. Chem. Ref. Data, 27:947–970, 1998. 5. doi:10.1063/1.556025.
[180]I. S. Aleksandrov, A. A. Gerasimov, and B. A. Grigor’ev. Using Fundamental Equations of State for Calculating the Thermodynamic Properties of Normal Undecane. Thermal Engineering, 58(8):691–698, 2011. doi:10.1134/S0040601511080027.
[181]F. L. Cao, X. Y. Meng, J. T. Wu, and V. Vesovic. Reference Correlation of the Viscosity of ortho-Xylene from 273 to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 45:023102, 2016. doi:10.1063/1.4945663.
[182]B. Balogun, N. Riesco, and V. Vesovic. Reference Correlation of the Viscosity of para-Xylene from the Triple Point to 673 K and up to 110 MPa. J. Phys. Chem. Ref. Data, 44:013103, 2015. doi:10.1063/1.4908048.